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Abstract. Maxwell’s equations are solved in the presence ofa metal slab. The response of the 
electrons in the slab to an electromagnetic wave is a current charge density which appears 
to be a non-local pseudopotential in the Hemlholtz equation. This pseudopotential com- 
prises Lindhard’s longitudinal and transverse dielectric functions internally, the scattering 
at the surfaces, and the vacuum dielectric function externally. External magnetic modes 
couple to internal magnetic modes; external electric modes couple to internal electric and 
longitudinal modes ; bound longitudinal modes and bound electric and magnetic modes are 
shown to arise as well. Explicit secular equations for the frequency of longitudinal and trans- 
verse bulk modes are derived which include the scattering at the surfaces. The phase shift 
of the free transverse modes at the slab is calculated and related to the reflectivity and the 
surface energy of the slab. The phase shift of the free electric modes is governed by the internal 
longitudinal dielectric function and that of the free magnetic modes by the internal transverse 
dielectric function. 

1. Introduction 

In investigations on the interaction of electromagnetic waves with condensed matter, 
it is often convenient to use the concept of electric and magnetic permeabilities. The 
first microscopic calculation into the dynamic response of a jellium (= electron gas + 
positive background) has been reported by Lindhard (1954). The local current charge 
density caused by an electromagnetic four-potential is calculated from the Schrodinger 
equation and the induced four-potential is found from Maxwell’s equations. The total 
electromagnetic potential is composed of the external and the induced four-potential 
in self-consistent manner. Lindhard obtains explicit expressions for the longitudinal 
and transverse dielectric functions. The longitudinal dielectric function allows for 
longitudinal plasmons : the electric field caused by the oscillating charge density is also 
the driving force for this charge density. The transverse dielectric function exhibits the 
possibility of diamagnetic currents at zero frequency : the magnetic field caused by the 
current density at the same time sustains the current density. 

The permeability concept has also been applied successfully to a number of surface 
effects. By assuming that the bulk dielectric function can be used up to the surface, it is 
possible to calculate the phase shift and reflectivity of external waves and the dispersion 
function of surface plasmons (Ritchie and Marusak 1966, Fuchs and Kliewer 1971). 
These investigations hold within the long-wavelength limit, ie the wavelength of the 
external wave and the normal extension of the surface plasmon must be large compared 
with the screening length of the electron gas. Even then, it is not a priori obvious whether 
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the longitudinal or the transverse dielectric function is responsible for the main effect. 
The response of the electrons and ions in condensed matter to an electromagnetic wave 
is generally non-local, such that each particular wave requires the use of a particular 
dielectric function. Moreover, the concept of permeabilities fails completely when 
short distances or wavelengths are considered. In investigations into electron emission 
from a solid, one has to modify the external electron potential by the image potential. 
However, the image potential is cut off at short distances, when the external electron sees 
the individual positions of the internal electrons rather than their average correlation 
potential, Similar divergences appear in investigations into the surface energy of a solid 
or on the van der Waals energy between two solids. The total correlation energy 
diverges if one maintains the concept of permeabilities at close distances. The effective 
permeability must be cut off either in real or in reciprocal space. 

An appropriate cut-off distance in real space is the distance of beginning electronic 
overlap, Reasonable agreement between experimental data on the energy of physisorp- 
tion and the theory of van der Waals attraction is obtained if a minimum distance of 
about 4 8, is used (Krupp 1967). The corresponding cut-off wavenumber in reciprocal 
space is the Fermi wavenumber of the electrons. Electromagnetic waves with wave- 
lengths shorter than the Fermi wavelength hardly have a chance of being screened by 
the electrons. Such a cut-off has been used by Schmit and Lucas (1972) in van der 
Waals-type calculations on the surface energy. However, the problem as to whether it 
is the missing correlation with the missing electrons in the exterior, or the rearrangement 
of the electrons within the surface region, which makes the main contribution to the 
surface energy, has not been resolved. Lang and Kohn (1970) have applied the theory 
of Hohenberg, Kohn and Sham (Hohenberg and Kohn 1964, Kohn and Sham 1965), 
which includes all correlation and exchange effects in local pseudopotentials, to an 
investigation of the surface energy. They calculate the change in electrostatic energy of 
the electrons due to the change in their ionic surroundings and find reasonable agreement 
with experimental data too. The difference between the two methods is that the change 
in correlation energy is calculated explicitly in the former method, whereas it is included 
in the ionic pseudopotential and forms a part of the electrostatic energy in the latter 
method. 

Attempts to calculate the response of a finite electron system to an electromagnetic 
wave have been reported by Fedders (1967), Feibelman (1968), Gerlach (1969), Newns 
(1970) and Beck and Celli (1970). The aim ofthese investigations is to obtain an improved 
knowledge of the surface potential and of the properties of the surface plasmons. Plane 
parallel surfaces, ie half-spaces or slabs, are considered and the electrostatic limit is 
applied. The surfaces imply that the induced potential does not exhibit the same normal 
wavenumber as the external potential, but takes the form of a Fourier series. The electro- 
static limit does not allow a consistent specification of the boundary conditions. The 
self-consistency condition requires the inversion of the response matrix between the 
Fourier components of the induced and external potentials or rather the solution of the 
equivalent integral equation ; this is conveniently done by iteration. The zeroth-order 
response to an external charge distribution yields the potential of the respective image 
charge. A review of the methods and the applications to electron-solid scattering was 
given by Feibelman et a1 (1972). Several attempts to include dynamic scattering have 
been initiated (SunjiC et a1 1972, Harris and Jones 1973). 

In this paper we consider the interaction of an electromagnetic wave with a finite 
electron system in the electrodynamic limit. This means that we do not restrict ourselves 
to the longitudinal electromagnetic modes within matter, but deal with longitudinal 
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and transverse modes internally and with transverse modes externally. Subdividing 
the transverse modes as usual into electric modes and magnetic modes, we find that the 
external magnetic modes interact with the internal magnetic modes, whereas the external 
electric modes interact with the internal electric and the longitudinal modes. No diffi- 
culty arises regarding the boundary conditions. Explicit dispersion functions for the 
bulk and surface modes are given and explicit expressions for the phase shift and the 
reflectivity of the external electromagnetic modes (photons) are derived. 

Considering electromagnetic rather than electrostatic equations not only renders 
improved dispersion functions, but is particularly important with respect to investiga- 
tions into correlation effects. It has often been argued that the van der Waals energy 
between two solids is due to the interaction between their surface plasmons (van Kampen 
et a1 1968). However, van der Waals attraction exists also if the surface plasmons are 
fictitious quantities, which require imaginary frequencies. The interaction via surface 
plasmons is merely an electrostatic substitute for the electrodynamic interaction via the 
external electric and magnetic modes (Langbein 1974). In order to obtain the correct 
van der Waals energy, one has to integrate the total free energy of the external modes 
relative to the case of infirite separation. Using the state density integration technique 
introduced by van Kampen et a1 it is possible to express this total free energy in terms of 
the phase shift of the external modes, ie the surface energy of a slab of matter is obtained 
by integrating the difference in phase shift between two slabs in contact and at infinite 
separation. An early transition to the electrostatic limit cannot yield the correct surface 
energy because it does not give the correct decrease of phase shift with wavenumber. 

In 2 we consider the current charge density induced in a finite electron system by an 
electromagnetic wave represented by its four-potential. In 3 we discuss the reaction 
four-potential resulting from the current charge density of the electrons by means of 
Maxwell’s equations. We obtain four coupled integro-differential equations which can 
be reduced to a single scalar equation in the case of magnetic modes (0 4) and to two 
coupled equations in the case of electric modes (8 5) .  In 5 6 we transform these integro- 
differential equations into a linear secular system by means of Green function tech- 
niques. In § 7 we simplify the resultant equations by assuming that the metal slab under 
investigation can be represented by a jellium slab. The secular system for the bulk and 
surface modes and the phase shift of the external modes are calculated explicitly in $5 8 
and 9. The reflectivity and surface energy of the slab are discussed in fj 10. 

2. Current charge density 

The literature on the response of an electron system to an external perturbation is 
substantial. If we are interested in the linear response to a monochromatic perturbation, 
it is sufficient to use time-dependent perturbation theory. Let us consider a system of 
electrons, whose one-electron states 

$(r, t )  = Ik =. exp( - iE,t/h) 

satisfy the stationary Schrodinger equation 

U(v)  is a pseudopotential representing the average Coulomb interaction with the 
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remaining electrons and with the positive ions. In order to obtain the perturbed one- 
electron states $(r, t )  in the presence of the monochromatic four-potential 

(3) 

(4) 

M r ,  t ) ,  W ,  t) )  = (A(r), W)) exp( - i 4 ,  

[(ihv + eA(r, t)/c)'/2m + U(r) + V(r, t )  - ih a/at]$(r, t )  = 0. 

we introduce the latter into the time-dependent Schrodinger equation 

In equation (3) and in the following we use the complex representation of the four- 
potential where we actually mean the real part. Linearizing with respect to the vector 
potential A(r, t )  we obtain 

( 5 )  [(it1v)~/2m + U(r) + 6U(r) exp( - iwt) - ih a/at]$(r, t )  = 0 

6U(r) = (ieh/2mc)(V. A(r)+A(r). V)+eV(r). 

where 

( 6 )  
In order to solve equation (5) by time-dependent perturbation theory we put 

+(r, t )  = ( Ik) + c(i, k ) lb  exp( - iwt) exp( - iEkt/h) 
I 1 (7) 

with Ik), 1,) representing the unperturbed one-electron states introduced in equation (1). 
We obtain 

C(l, k )  = (rldU(r)lk)/(Ek -E,+ hw). (8) 
The current charge density ( j / c ,  p )  due to the one-electron state $(r, t )  in the presence of a 
magnetic vector potential A(r, t )  is given by 

(9) j(r, t ) /c  = (e/2mc)[I(/(ihV - eA/c)$* - $*(ihV + eA/c)+] 

P(V, t )  = e$*$. (10) 

Substituting the one-electron states (7) and summing over all occupied states, we obtain 

where fk is the occupation number of state Ik) : 

1 occupied 
{empty fk = {o for Ik) being 

The response (d j /c,6p) of the electron system arises in terms of the stationary one- 
electron states Ik), 1,). 

3. Helmholtz equation 

The current charge density induced by the four-potential in turn causes a response of the 
four-potential. Attributing the screening of fields exclusively to the electron system, we 
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consider Maxwell’s equations in a vacuum : 

aB/a (c t )+v  x E = o 
- aE/a(ct) + v x B = 471 6j/c 

V . B = O  

V . E = 471 6p. 

We introduce the four-potential (A(r),  V ( r ) )  as usual : 

B = V X A  E = -aA/a(c t ) -VV.  (16) 

Then adopting the Lorentz gauge 

v . A + av/a(ct) = 0, (17) 

we obtain the inhomogeneous Helmholtz equation 

[v2 - a2/a(ct)2] ( A ,  v) = - 4n(6j/c, 6p). 

Since the four-potential and the current charge density both oscillate with frequency o, 
we have 

[V2 + ( w / c ) ~ ] ( A ,  V )  = - 4n(6j/c, 6p). (19) 

Equations ( 1  I) ,  (12) describe the current charge density caused by the four-potential 
and equation (19) describes the four-potential caused by the current charge density. 
We have now obtained a self-consistent system of equations for the four-potential and 
the current charge density, or alternatively, an integro-differential equation for the 
electrodynamic four-potential in the presence of the electron system under investigation. 

Non-vanishing contributions to the current charge density (1 l), (12) arise from each 
pair consisting of an occupied and an empty electron state; Ik) must be occupied and 
Ir> empty, or vice versa. The current charge density vanishes as expected in the region 
of vanishing electron density of the occupied states. The solutions of the Helmholtz 
equation (19) in this region are strictly transverse electromagnetic modes. In view of the 
fact that the current charge density of the electrons arises by applying a linear integral 
operator to the four-potential, we may alternatively regard the electron system as a 
pseudopotential acting on the electromagnetic field. 

The vector Helmholtz equation (19) appears to consist of four scalar equations. 
However, only three of them are independent. By applying the four-divergence [V, a/a(ct)] 
to both sides of equation (19) we find that the left-hand side vanishes according to the 
Lorentz gauge (17) and that the right-hand side vanishes according to the continuity 
equation, which is guaranteed by the definition (9), (10) of the current charge density. 
If the dependence of the fourth equation (19) on the first three equations is not obvious 
from the beginning, we may change the gauge of the four-potential. It is well known that 
when SV(v)  satisfies the homogeneous Helmholtz equation, we can change the four- 
potential by [V SV(r), (iw/c) SV(r)] without causing an additional magnetic or electric 
field or an additional current charge density. 

By applying equations ( l l ) ,  (12) and (19) to an infinite jellium and using the trans- 
lational invariance (Bloch’s theorem), we readily recover Lindhard’s longitudinal and 
transverse dielectric functions. Their zeros yield the dispersion relations of the bulk 
plasmons. In real lattices we find a coupling of electromagnetic waves with wavevectors 
q and q+g, where g is a reciprocal lattice vector, and a corresponding splitting of the 
dispersion curves into bands confined by Brillouin zones (Pandey et a1 1974). 
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4. Magnetic modes 

As we are interested in the effect of surfaces, let us now consider the inhomogeneous 
Helmholtz equation (19) in the presence ofa metal slab. We put the x axis of a rectangular 
coordinate system normal to the slab and the y axis along the surface of the slab in the 
plane of incidence of the external wave. The slab is assumed to have thickness L,  in the 
x direction and to extend infinitely in the y and z directions (L,, L, -+ E). 

Assuming that the lattice potential in the slab under investigation varies only smoothly 
in the tangential directions y and z ,  we represent the one-electron states Ik) by plane 
waves tangential and an arbitrary function Ik,) normal to the surfaces, ie 

Ik) = I k,) exp(ik,y + ik,z)/(L,L,)' ' .  (20) 

The solutions of the vector Helmholtz equation (19) in the exterior are well known to be 
electric or magnetic modes. They result by applying the curl operator to any vector 
solution of the scalar Helmholtz equation (Morse and Feshbach 1953). In rectangular 
coordinates it is convenient to use 

(21) 

with s = 1 for magnetic modes and s = 2 for electric modes; a is an arbitrary constant 
vector. 

Looking for the magnetic modes in the presence of a slab, we use the Bloch theorem 
tangential to the surfaces but allow for an arbitrary variation of A(r) in the x direction, 
ie we put 

(22) 

( N ,  W)) = ((V x )"a exp(iqr), 0) 

(m9 ,  Vr)) = (V x 4 x )  exp(iq,y), 0)  
where a(x) is a vector normal to the surfaces, exhibits the periodicity of the lattice inter- 
nally and is a plane wave externally ; qz equals zero according to our choiceof coordinates. 
Substituting the electron states (20) and the four-potential (22) into the matrix element 
(8) we obtain 

(llaU(r)lk) = ~ f y k y + ~ y ~ i r k r ( i e h / 2 m C ) 2 q y k L ( 1 X l a ( X ) l k X ) .  (23) 

1, = k , + q y ,  I ,  = k, (24) 

The wavenumber tangential to the surfaces is conserved, ie 

and matrix element (23) is an odd function of k,. 
Substituting equation (23) into the current charge density given by equations (1 1) 

and (12), we make use of the fact that E, and E,  are even functions of k,. We find that the 
current density in the plane of incidence and the charge density both vanish and we are 
left with a current density in the z direction. The induced current density is parallel to 
the four-potential and we obtain the scalar equation 

and 

q: + q; = ( o / c ) 2 .  
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We are left with an ordinary integro-differential equation for the scalar factor a(x) in 
the vector potential (22). Outside the metal slab we again obtain plane waves. The 
response of the slab is represented in terms of the electron states Ik,), 11,). The explicit 
form of Ik,), Il,) has not been used so far. Equation (25) is valid in the presence of 
arbitrary one-electron potentials U(x) .  

The kernel Q(k,, I,) arises by integration over the wavenumbers k,, k, tangential to 
the surfaces. Q(k,, I,) is an even function of frequency ; the summation in equation (26) 
extends over both signs of w. This summation results from interchanging the labelling 
of states Ik) and I f )  in the term containing fi in equations (1  1 )  and (12). 

5. Electric modes 

Turning to electric modes, equation (21) for s = 2, we learn that it is no longer possible 
simply to replace U by a vector a(x) normal to the surfaces. The substitution of the result- 
ant four-potential into matrix element (8) and subsequently into the current charge 
density, equations ( 1 1 )  and (12), shows that the induced current charge density is not 
parallel to the four-potential, even after changing the gauge of the latter. In order to 
separate the Helmholtz equation (19) we must add an internal longitudinal mode. It 
turns out convenient to put 

where ul(x) and a2(x) are both vectors normal to the surfaces; al(x) describes a purely 
electric mode, whereas a2(x) allows for a longitudinal mode internally. 

Insertion of the four-potential (28) into the matrix element (8) yields 

where for convenience we write V,(k,) = IV,k,), and where 

Cll = Qyk, 

Cl2 = - 2 m ~ / h + ( w / c ) ~  
C2l = 2q,l, 
C22 = -2mw/A-(~/c)~ .  

The wavenumber tangential to the surfaces is again conserved, ie equation (24) is valid. 
By substituting the matrix element (29) into the current charge density and using the 

fact that matrix element (29) and E ,  and E,  are even functions of k,, we find that the z 
component of the current density and the respective component of the four-potential 
(28) vanish. We are left with three scalar Helmholtz equations (19), which are interrelated 
by the Lorentz gauge and the continuity equation. The Helmholtz equation relating 
to the tangential components of the four-potential and the current density can be written 
as 

cv; + q;)V,al(x) 

= 2  1 ((v,~,lQi,ai(x)+Qiza2(x)lkx> + (IxIQziai(~)+Q22a2(~)IVxk,>)l1,)  (k,I (31) 

where 
k x  1s 
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and i , j  = 1,2. The second term in the square brackets of equation (32) is the contribu- 
tion of the charge density (12). 

The corresponding Helmholtz equation relating to the electric potential and the 
charge density reads 

cv; + q;)Vxa2(x) 

= 2 c 1 ((V,LJRl lal(x)+Rl2a2(x)lk,) + (~xlR,,a,(x)+ R22a2(X)IV,kx)H~,) (k,l (33) 
k x  I.x 

where 

The longitudinal amplitude a2(x) is considerably more affected by the response of the 
electrons than the transverse amplitude al(x). The ratio between the respective kernels 
equals 2mc2/ho. 

The third relevant Helmholtz equation, that relating to the normal component of 
the vector potential and the current density, is implicitly included in equations (31) and 
(33). By applying the V, operator to the Helmholtz equation for the normal component, 
we obtain a linear combination of the former equations. This reduces the meaning of 
the third Helmholtz equation to the condition that the normal current density must 
vanish at the surfaces, that is 

(35) {(v: + 4;)[4y2alcx)-(o/c)2a2(x)l},",f,,, = 0. 

We are left with two coupled integro-differential equations, rather than with the single 
equations obtained in the case of magnetic modes. The statements made in the two final 
paragraphs of 8 4 concerning the properties of the kernels and the form of the electro- 
static potential V(x) and the electron states Ik,), 11,) hold in the case of the electric modes 
as well. The obvious reason for the coupling of the external electric modes to the internal 
longitudinal modes is the fact that the electric modes exhibit a non-vanishing electric 
field normal to the surfaces. The induced normal current density must be cancelled by a 
coupling to an internal longitudinal mode before the boundary conditions between 
external and internal electric modes can be satisfied. 

In the electrostatic limit, ie when c = CO is assumed, we find that the response of the 
electrons to a magnetic mode vanishes. In the case of external electric modes we may 
cancel the Helmholtz equation for the internal transverse amplitude al(x) and are left 
with the internal variation of the longitudinal amplitude a2(x). Using the fact that 
R 1 2 ( k , ,  I,) and R2,(kX, 1,) become equal in the electrostatic limit we obtain 

cv; + 4 ; ) w  = - 2  1 R,,(k,, ~ x ~ < ~ , l ~ ~ ~ ~ l ~ , ~ l ~ , ~  (k,I. (36) 
k, 

Equation (36) describes the screening of external electrostatic fields by the electrons and 
has been used by Feibelman (1968), Gerlach (1969) and Newns (1970) for investigations 
into surface plasmon dispersion. 

6. Secular system 

We have now reduced the vector Helmholtz equation (19) to a single scalar integral 
equation describing magnetic modes and two coupled integral equations describing 
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electric and longitudinal modes. The response of the electrons to the driving electro- 
magnetic wave gives rise to the pseudopotential given on the right-hand sides ofequations 
(25) and (31), (33). This pseudopotential is not only confined to the region of non-vanishing 
electron density, but also depends on the frequency and the wavenumber of the wave 
under investigation. It comprises Lindhard’s longitudinal and transverse dielectric 
functions internally, the scattering at the surfaces, and the vacuum dielectric function 
externally. 

The solutions of second-order differential equations containing a confined potential 
are well known to be either plane waves or to decrease exponentially in the exterior. 
We obtain free electromagnetic modes, whose wavenumber is increased internally and 
whose eigenvalue spectrum is continuous. Since the outgoing and ingoing waves q, 
and - q, are degenerate, we have 

(a(x))ex, = a cos 4x(x - xo) (3 7) 

in the case of magnetic modes, whereas the case of electric modes is covered by adding 
the subscript j = 1,2. We shall discuss the phase xo of the external modes in 9 9. 

Secondly, there are bulk modes which oscillate internally and decrease exponentially 
externally and whose eigenvalue spectrum is discrete. We denote the external damping 
parameter by n,, ie we put 

(4x))ex, = a exp( - nxIxI) 

nf = - q: = 4,’ - ( O / C ) Z .  

(38) 

where 

(39) 

Thirdly, depending on the properties of the pseudopotential, it is possible that surface 
modes exist. They are localized at the surface and decrease exponentially internally and 
externally. Like the bulk modes, they satisfy equation (38) and contribute to the dis- 
crete eigenvalue spectrum. 

In order to transform the above integro-differential equations (25) and (31), (33) into 
a linear secular system with discrete eigenvalues, we must try to reproduce on the left- 
hand side the matrix elements (/,la(x)lkx) appearing on the right-hand side. This may 
be achieved by applying Green function techniques. The Green function of the dif- 
ferential operator V: + qf , which guarantees an exponential decrease externally for 
q, = in,, can be written 

G(x - 5) = (2iqx)- exp(iq,lx - <I), (40) 
yielding in the case of magnetic modes 

The lower and upper integration limits x1 and xz are conveniently chosen to coincide 
with the slab surfaces. By multiplying equation (41) with a second pair Im,)(n,I of 
electron states and integrating over the slab we obtain the secular system 

<nx14x)lm,> = 2 1 Q(k,, ~x)<~x14~)l~x) (n,l(klG(x- t)l~x>lm,>. (42) 

The inner integration in the last term on the right-hand side refers to 5, and the outer 
integration refers to x. Interchanging the arguments x and leaves the Green function 
G(x - 5 )  unchanged, so that the pairs Il,) (k,l and Im,) (n,l may also be interchanged. 

kx I x  
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The secular system (42) contains more equations than we need. The electron states 
Jk,) represent a complete set of functions in the slab, whereas the considered set of pro- 
ducts [ I , )  (k,l is overcomplete. We are free to select a complete set of products Im,) (n,l 
and to expand the matrix elements (I,la(x)lk,) accordingly. We may, in particular, 
choose (n,l to be a fixed electron state and run through the set of states Im,) only. 
Another appropriate expansion is that with respect to the electron density Im,) (m,l 
in the individual states Im,). The inversion ofthe reduced secular system (42) is the central 
task in order to find the possible eigenfrequencies of magnetic modes in the presence of a 
metal slab. The corresponding eigenfrequencies of electric modes arise by applying 
an equivalent Green function and integration technique to equations (3 1) and (33). 

7. Jellium slab 

In order to simplify the above secular system, let us assume that we may represent the 
one-electron potential of the metal slab under investigation by a rectangular potential 
well with depth AU. We are then dealing with free electrons moving in the rectangular 
potential of a positive background, ie with a jellium. We find bound electron states, which 
are plane waves internally and drop off exponentially externally, and free electron states, 
which are plane waves internally and externally. We are mainly interested in the bound 
states. Assuming the surfaces of the potential well to be at t l  and t2 (see figure l), we put 

c1 exp( +x,x) on the left 

Ik,) = c2 sin k,(x - x l )  internally i c3  exp( - x,x) on the right 
(43) 

with the internal wavenumber k, and the external exponent x ,  being related by the depth 
AU of the potential well according to 

(h2/2m)(kf +xf )  = AU. (44) 

I 
I I 

1 -  L x  -, 
I 1 

Figure 1. Jellium slab. 

If we require continuity of Ik,) and V, (k , )  across the surfaces at t1 and t2 we obtain the 
boundary conditions 

(45) x x  = kxcotk,(5,-x,) = -k,cotk,(5,-x,). 
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Hence, 

k, = nN/L,, N integer 

L, = (t2-51)+2(51 -x1) 
t l  -xl  = k;' sin-'[hkX/(2m AU)' 2]. 

Provided that the kinetic energy of all states under consideration is small enough to 
prevent the electrons from leaving the jellium, h2k:/2m < AU, we find that the phase 
C l  -xl  of the electron states Ik,) at the surfaces depends only smoothly on the wave- 
number k,, so that the set of possible wavenumbers according to equation (46) is ap- 
proximately equidistant. The jellium appears to be broadened by twice the width t1 - x l .  
The effective thickness L, of the slab according to equation (47) is given by the width 
l 2  -11 of the potential well plus twice the extension t1  - x l  of the electron states to the 
exterior. Normalizing states (43) within - cc < x < + a yields 

c* = (2/L,)' 2 .  (49) 

A more rigorous treatment of the electron states in the vicinity of surfaces has to ac- 
count for the fact that the electrons themselves disturb the rectangular potential at- 
tributed to the positive background. The electron density and the effective potential 
approach their bulk value via Friedel oscillations having twice the Fermi wavenumber 
(Bardeen 1936). However, accounting for these oscillations and for the external variation 
of the correlation and exchange potential would considerably exceed the scope of the 
present investigations. 

8. Bulk and surface modes 

Since the one-electron states (k,) are plane waves internally, we find that the matrix 
elements arising in the secular system (42) are actually Fourier cosine transforms of a(x) 
in the slab. Defining 

The Fourier cosine transformation of equation (41) yields 

where 
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Equation (52) represents an explicit secular system for magnetic bulk and surface modes. 
The factor 1 -exp(ipxLx-nxLx) in front of the second term on the right-hand side of 
equation (52) characteristically depends on the question of whether the wave under in- 
vestigation fits into the slab. If the thickness of the slab is small compared to the external 
extension of the wave, n,L, << 1, this factor oscillates as sin +p,L,, ie the wavelength is 
compared with the slab thickness. In the opposite case, when the external extension of 
the wave can be neglected, this factor approaches one. 

Attempting to represent the amplitude a(x) in the slab in teims of the Fourier com- 
ponents (50), we note that equation (52) provides Fourier cosine components with respect 
to twice the slab thickness, 2L,, but no Fourier sine components. Putting 

we actually obtain that function which arises by continuing a(x) symmetrically across 
the surfaces x1 and x2 .  We can use equation (54) for finding ( ~ ( x ) ) ~ , , ~ ~ ~ ~ ,  but may not 
differentiate with respect to x at the surface : the derivative is discontinuous. 

Let us now consider electric bulk and surface modes. Rather than the single differen- 
tial equation (25), we have to solve the coupled differential equations (31) and (33). 
Using the jellium states (43) we find that the matrix elements of ajx), j = 1,2, arising 
in equations (31) and (33) are actually Fourier sine transforms of aj(x) in the slab. Now 
defining 

r 

aj(px) = J dx aj(x) sin p,(x -x l )  
slab 

we obtain 

( 5 5 )  

<Ixlaj(x)lVxkx> = kxL; '(aj(/x + k x )  + aj( lx  - kx)). (57) 

The transformation of equations (31) and (33) into a set of linear secular equations for 
aj(px) is not quite as straightforward as in the case of magnetic modes. The integration 
of equations (31) and (33) by means of the Green function (40) yields the derivatives 
V,aj(x) rather than aj(x),j = 1,2. Applying a Fourier cosine transformation to the resul- 
tant equations, we obtain 

'- 

ie there arise surface terms aj(xl) and aj(x2) which cannot be expressed in terms of the 
Fourier sine components aj(px) for a similar reason as in the case of magnetic modes : 
the Fourier series 

represents that function, which results by continuing a,(x) antisymmetrically across the 
surfaces x1 and x2.  

In order to eliminate the surface terms, we apply the Fourier cosine transformation 
a second time directly to equations (31) and (33) without using the Green function 
technique. The surface terms arising now can be eliminated by means of those obtained 
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--P,II; '[l -exp(ip,l, - - ~ x ~ x ) l S 1 j ( p x  + 2k,, nn,)}aj(p,+2k,) (60) 

(61) 

where 

S l j ( P x ,  nx) = L;' 1 [ ~ x + k x ) Q l j - k x Q 2 j l { ~ ~ + ~ f ) - ' - [ ~ x + 2 k x ) 2 + ~ ~ 1 - ' } .  
k k, 

The arguments of Qi j  in equations (60) and (61) are Qii(k,, p , +  k,). The corresponding 
secular equations containing a&,) arise by replacing the kernels Qii(k,, p x +  k,) by the 
kernels Rij(k,, p ,+k , )  and SIJ@,, II,) by S2j (px ,  n,) in equations (60) and (61). Equation 
(60) together with the corresponding equation for a,@,) represents an explicit secular 
system for electric bulk and surface modes. Like the respective secular system (52) for 
magnetic modes, equation (60) contains the factor 1 -exp(ip,l, - n,L,.. which compares 
the wavelength and the external extension of the wave with the slab thickness. 

A real bulk mode is characterized by the fact that a single Fourier component a,@,) 
dominates the others. Equating to zero the diagonal terms on the left-hand sides of 
equations ( 5 2 )  and (60), we recover Lindhard's dielectric functions for longitudinal and 
transverse bulk modes. The perturbation of these bulk modes by the scattering at the 
surfaces is given by the off-diagonal terms on the right-hand sides of equations (52) and 
(60). Applying perturbation theory to the secular systems (52) and (60), we learn that the 
mutual repulsion of the bulk modes by their interaction at the surfaces is generally 
proportional to the inverse slab thickness. 

We expect a real surface mode to decrease exponentially in the interior as well. 
In that case we cannot single out a distinct Fourier component aj(p,), but have to look 
for additional solutions of the full secular systems ( 5 2 )  and (60). From the theory of 
electron states it is known that the question of whether real surface states exist depends 
sensitively on the precise form ofthe surface potential. This statement holds in the present 
case, where we consider electromagnetic waves in the pseudopotential caused by the 
electron transitions. An argument in favour of surface modes is the fact that the eigen- 
value spectrum formed by the bulk modes turns out to be rather narrow, which makes the 
existence of additional states more likely. 

9. External modes 

Free electromagnetic modes, in contrast to the bulk and surface modes, allow for an 
arbitrary phase at the surfaces. By making use ofequation (37) we do not obtain a secular 
system but a continuum of allowed frequencies. We are now interested in the phase shift 
of the free modes at the surfaces. By a direct Fourier cosine transformation of equation 
( 2 5 )  in the slab we find 

(4: - P:)a(P,) + [cos P,(X - XI )V,a(x)l;: 

Equation (62) relates the internal Fourier components a@,) to the derivative V,a(x)  
at the surface, equation (54) gives a(x) at the surface in terms of the internal Fourier 
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components a(p,), and equation (37) relates V,a(x) and a(x). Solving these equations by 
iteration we obtain 

(63) cot %(xi -xo)fcoth,L,  = L;' 1 [ 2 4 , / ( d  -p~)Is(P,, -kX) 
f Px 

where S(p,,  -i4,) is given by equation (53). The off-diagonal terms in the secular system 
(52), which determine the interaction between the bulk modes, also give rise to the phase 
shift of the free modes. 

The second term on the left-hand side of equation (63) has been obtained by using 
the representation of cot &,L, in terms of its poles, ie 

depending on whether we consider even or odd solutions with respect to the centre, 
p ,  = nN/L,, N even or odd. Equation (64) gives the phase of the unperturbed modes at 
the surfaces x = xl, x2. If not stated otherwise, we consider the equations referring 
to the even solutions in the following. 

The right-hand term in equation (63) is conveniently summed by dissecting it into 
partial fractions and using the theorem of residues. This is done in the appendix. We 
obtain three characteristic contributions: there are terms proportional to cot $4,L, which 
compare the wavelength with the slab thickness, terms proportional to (d/dq,) cot &.L, 
which may be ascribed to a change of the internal wavelength, and there is an integral 
over cot ipL,  where p is the normal wavenumber of the possible electron transitions. 
This term compares the wavelength of the electron transitions with the slab thickness. 
The integration over p runs partly along the imaginary axis if the tangential wavenumber 
qY exceeds molhk, ,  and fully along the imaginary axis if qY exceeds 2k, ;  cot +pL, then 
approaches + i  and the term under consideration takes a constant value. 

We conclude : the phase shift of an external magnetic mode with wavenumber 
(4,, qY ,  0) changes drastically if the tangential component qY exceeds two times the Fermi 
wavenumber k, .  A similar statement holds for the normal component 4,. The main 
dependence on the normal wavenumber 4, is included in the factor cot iqxL, ,  which is 
due to the question of whether the wave under consideration fits into the slab. 

The case of electric modes is again somewhat more involved than that of magnetic 
modes due to  the fact that we have to  consider two coupled amplitudes al(x) and a2(x) 
and because the internal Fourier expansion (59)diverges at the surfaces. Both the internal 
electric amplitude al(x) and the internal longitudinal amplitude a2(x) represent an 
electric mode externally. The effective external amplitude of the electric mode (28) is 
given by a1(x ) -u2(x ) .  A variation of the external amplitudes, which maintains their 
difference, entails a gauge transformation of the four-potential, but no change of the 
electric and magnetic fields according to equation (16). Although the Fourier expansion 
(59) for (U~(X)),,~~ represents its antisymmetric continuation across the surfaces, we may 
still use it for calculating (Vxaj(~)),,,fdce if we are able to separate off the discontinuous 
contribution at the surfaces. 

In a similar manner to our procedure in the case of magnetic modes, we calculate 
the phase shift of the electric modes by first expressing the Fourier components aj(p,) 
in terms of the amplitudes aj (x )  at the surface. Then we represent V,aj(x) at the surface 
in terms of the Fourier components aj(p,) by means ofequation (59). Finally, interrelating 
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V,aj(x) and ajx)  by means of equation (37), we obtain 

tan qx(x1 - x,) + tan +4%J!-, = L; r2qJ(q: - P 3 l  n p , ,  - iq,) (65) * Px 

where 

The quantities T(p,, -iq,) and R(k, ,  1,) are introduced in analogy with the quantities 
S(p , ,  -iq,) and Q ( k , , / , )  used in the case of magnetic modes. Equations (65) to (67) 
correspond to equations (63), (53) and (26) respectively. The further evaluation of the 
phase shift of external electric modes is strictly in line with the procedure used for mag- 
netic modes. The striking difference between the phase shift of electric and magnetic 
modes is the fact that the effective electric response function R(k, ,  1,) is larger than the 
magnetic response function Q(k , ,  I,) by the factor (mclhk,)’. The electric modes interact 
with internal longitudinal and transverse modes. The magnetic modes interact with 
internal transverse modes only. The longitudinal bulk modes push the electric modes 
strongly out of the slab. The metal slab under investigation is strongly birefringent. 

It is now necessary to emphasize that in this and in the preceding section we have 
used an iteration method up to terms of order one. We have considered the terms linear 
in the interaction between external and internal modes only. It is the higher-order 
terms which account for the screening and cause the impenetrability of the slab for 
particular modes. We have to orthogonalize the external modes with respect to the 
bulk modes. The present iterative investigations apply to thin slabs only. 

10. Macroscopic effects 

Among the numerous applications of the present procedure, let us consider the reflec- 
tivity and the surface energy of the slab. In order to obtain the reflectivity, we are inter- 
ested in such solutions of equations (25) and (31), (33) which represent ingoing waves on 
the left and outgoing waves on both sides. The ratio of the intensity of the outgoing wave 
to that of the ingoing wave on the left is the reflectivity of the slab. We have to  combine 
the even and odd solutions under consideration in such a manner that the ingoing con- 
tribution vanishes on the right. Putting on the left 

(u(x))ext = seven cos qx(x - xeven) f sin qx(x -Xodd) (68)  

= qx(xeven -Xodd). (69) 

and equating to zero the ingoing contribution on the right, we obtain the reflectivity 

Using the addition theorems for circular functions we are able to represent the reflec- 
tivity of the slab fully in terms of the phase shifts discussed in the preceding sections, 
that is 
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The factor cot qx(x - xeven) is given by equations (63) and (65) for the case of magnetic 
and electric modes respectively ; tan qx(xl -Xodd) results from these equations by shifting 
the argument of all circular functions by 4.. The reflectivity R thus exhibits mainly the 
same dependence on frequency, angle of incidence, and Fermi wavenumber as does the 
phase shift. 

In order to obtain the surface energy of the slab under investigation we compare a 
slab with thickness 2(r2 - tl) with two slabs with thickness t2 - t1 at infinite separation. 
The resultant change in total free energy of the electromagnetic modes yields twice the 
surface energy of the slab. Let us first consider two slabs with thickness t2 - t1 at 
finite separation and introduce a large, perfectly reflecting cavity at i- xc, which singles 
out a discrete spectrum of possible frequencies of the electromagnetic modes and thus 
makes possible the integration of the total free energy. In that case we have to compose 
the even and odd solutions (68) corresponding to the individual slabs in such a way that 
even or odd solutions with respect to the centre and zero amplitude at x = xc arise. 
We obtain 

where Aeven and Aodd are the phase shifts of the modes even and odd with respect to the 
individual slabs, whereas the braces {cos, sin} and { -sin, cos} refer to the modes even 
and odd with respect to the coupled system. 

In the second case of interest, when the two slabs are in contact, we denote the result- 
ing phase shifts by reven and r o d d .  We obtain the dispersion relations 

The surface energy of the slab is obtained by providing all electromagnetic modes allowed 
according to dispersion relations (71) and (72) with the free energy of bosons and sum- 
ming the change in free energy in the case of contact and infinite separation, ie 

2Es,,fa,e = [kTln 2 sinh(hw/2kT)]:;; 
all modes 

(73) 

From the theory of van der Waals attraction it is known that the sum in equation (73) 
can be calculated without explicitly solving dispersion relations (71) and (72) for the 
allowed frequencies. We may replace the summation over all zeros of these dispersion 
functions by a contour integral around the poles of the logarithmic derivative of the 
dispersion functions (van Kampen et a1 1968, Richmond and Ninham 1971, Langbein 
1974), yielding 

2Esurrace/LyLz = 1 ( 2 ~ ) - ~  ss dq, dqZ(h/4ni) dw cot(hw/2kT)ln G(w). (74) 

The summation in equation (74) extends over electric and magnetic modes. The hyper- 
bolic cotangent results from shifting by partial integration the derivative with respect 
to frequency from the dispersion function over to the free energy. G(o)  is the ratio of 
dispersion functions (72) and (71) when the slabs are in contact and at infinite separation. 

el ,  mag - im 
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Since we are now integrating along the imaginary frequency axis, we need G(w) at 
imaginary frequencies only. We find that q, also becomes imaginary according to equa- 
tion (27). Putting 4,  = in, we may readily increase the size of the cavity and the separa- 
tion of the slabs to infinity, xc -, CO and $(x, + x2) -, 00, yielding 

The surface energy of the slab is obtained by integrating along the imaginary frequency 
axis the difference in phase shift between the slabs in contact and at infinite separation. 
There are generally two different contributions to the surface energy : 

(i) In 6 9 we considered the phase shift of the external modes up to iteration terms of 
order one only. A slab with double thickness causes twice the phase shift within this 
limit, suggesting that the surface energy would vanish. However, there is a difference in 
phase shifts left owing to the fact that a slab with thickness 2(t2 -tl) does not exhibit 
exactly twice the effective thickness L, according to equation (47). The extension 
5, -xl  of the electron states to the exterior is removed at the surfaces in contact. This 

contribution to the surface energy has been considered explicitly by Lang and Kohn 
(1970). We learn that it arises automatically also in van der Waals-type investigations 
into the surface energy. 

(ii) The screening of the external electromagnetic waves is covered by the neglected 
iteration terms of order two. These terms decouple the distortion of the electromagnetic 
waves at the left-hand surface from that at the right-hand surface. Taking screening into 
account, we expect the phase shift and the surface energy to approach a constant value 
as a function of the slab thickness. 

Finally, we should emphasize that the procedure used in this section is not limited 
to the contribution of the free electromagnetic modes to the surface energy. The dis- 
persion functions (71) and (72) also include the bulk and surface modes which decrease 
exponentially in the exterior and are therefore not affected by the cavity at all. We have 
already noted in the preceding sections that it is the scattering terms at the surfaces 
which give rise to the confinement of the internal modes and the phase shift of the external 
modes. 

1 1. Conclusions 

The present investigations are basically semiclassical. We accounted for quantum theory 
merely by calculating the response of the electrons from the Schrodinger equation. 
Most of the above results hold if another means of calculating the response, such as 
the Boltzmann equation, is used. The Schrodinger equation provides the specific 
information on the energy of the single-electron excitations. Within this semiclassical 
limit we find full analogy between electromagnetic waves and electrons. The electro- 
magnetic waves cause the potential in the Schrodinger equation which determines the 
properties and the energy of the electron states, and the electrons cause the pseudo- 
potential in the Helmholtz equation which determines the properties and the energy of 
the electromagnetic waves. We find bulk, surface and free states in both cases. In the 
exterior the bulk states drop off exponentially, while the free states become plane waves. 

The potential exerted by the electrons on the electromagnetic waves is a non-local 
pseudopotential which depends on the frequency and wavenumber of the electromagnetic 
wave and is confined to the region of non-vanishing electron density. We have derived 
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the secular equations for the bulk electromagnetic modes and have calculated the phase 
shift of the free electromagnetic modes. In the bulk we find both longitudinal and trans- . 
verse modes. The longitudinal bulk modes are the well known plasmons, ie they are 
many-electron states, which are confined to the slab by the pseudopotential caused by 
coherent single-electron oscillations. The transverse bulk modes are many-photon 
states, which are confined to the slab by the pseudopotential caused by coherent current 
oscillations. 

The scattering at the surfaces causes a coupling between longitudinal and transverse 
modes. The normal current density must vanish. The magnetic bulk modes exhibit a 
current density tangential to the surface only. The surfaces cause a coupling between 
the magnetic bulk modes which is inversely proportional to the slab thickness. The 
electric bulk modes and the longitudinal modes exhibit a current density normal to the 
surface; they are mutually coupled. We obtain a secular system which contains the di- 
electric function of the bulk modes along the diagonal, whereas the off-diagonal elements 
are caused by the surface. Externally only electric and magnetic modes exist ; they are 
orthogonal to the bulk modes. The phase shift of the magnetic modes is governed by the 
internal transverse dielectric function, whereas the phase shift of the electric modes is 
governed by the internal longitudinal dielectric function ; the latter is larger than the 
former by a factor (mc/hk,)2. The phase shift of the external modes found by means of 
the present procedure differs from that obtained on the basis of the usual permeability 
concept by the term which compares the normal wavelength of the single-electron 
transitions with the slab thickness. This normal wavelength becomes imaginary, ie we 
obtain an exponential decrease of the interaction internally, if the tangential wavenumber 
of the wave under consideration exceeds two times the Fermi wavenumber. The phase 
shift of the external modes depends drastically on the angle of incidence. 

Both the reflectivity and the surface energy of the slab can be represented in terms 
of the phase shift of the external modes. The reflectivity exhibits mainly the same 
dependence on frequency, angle of incidence and Fermi wavenumber as does the phase 
shift. The surface energy is given by the phase shift at a slab of double thickness minus 
twice the phase shift at a slab of regular thickness at imaginary frequencies. It exhibits 
a contribution resulting from the extension of the electron states to the exterior and a 
contribution describing the lacking correlation of the electrons with the exterior. The 
controversy (Feibelman 1973. Kohn 1973, Budd and Vannimenus 1973, Barrera and 
Gerlach 1974) which has arisen over the papers of Lang and Kohn on the one hand, 
and of Schmit and Lucas on the other hand, is irrelevant. Van der Waals-type calcula- 
tions on surface energy cover the extension of the electron states across the surfaces if 
allowance is made for the smooth variation of the dielectric function from the interior 
to the exterior. On the other hand, in the investigations reported by Lang and Kohn, 
we must stipulate that the correlation terms at the surface are adequately described by 
a one-electron pseudopotential. 
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Appendix. Evaluation of phase shift 

The right-hand term in equation (63) is conveniently evaluated by dissecting it into 
partial fractions; S @ , ,  -iq,) exhibits poles at p ,  = + q x ,  p , + 2 k x  = + q x ,  and poles 
arising from the energy denominators of Q(k, ,  p ,  + k,) according to equation (26). 
Substituting 

and re-labelling the summation over p x  in the terms containing p, + 2k,, we obtain 

Summing first over p ,  we denote the poles of Q ( k , ,  p ,  + k,) with respect to p, by p, ie 

p = + [k: + k: - (k, + 4,)’ & 2mw/h] ”* - k, . 04.3) 

Now breaking up also Q(k , ,  p ,  + k,) into partial fractions, summing over p ,  and finally 
replacing the integration over k, in Q(k,, p ,  + k,) by that over p ,  we obtain 

- L; Q ( k ,  P ,  + k,)/@, - 4,) 

= (e2/4zmc2) ( jj dp 4; ’ dk, ktfk 

f PX 

(cot $PLx -cot f4,Lx)/(P - Yx) 
+,-  

The integration over p in equation (A.4), as was the integration over k,, is limited to the 
Fermi sphere k < k, by the occupation number fk. This yields generally two different 
regions of integration corresponding to the two signs of the square root in equation (A.3). 
Difficulties in the above summations and integrations, which may arise by crossing a 
pole, can generally be overcome by slowly switching on the electromagnetic fields with 
a time constant a, ie w + w + icr. Inserting equation (A.4) into equation (A.2), we split 
the phase shift into three terms. Mainly for mathematical reasons we put 

(‘4.5) cot qx(xl -x,)+cot $qxLx = ( e ’ / 4 n m c ’ ) ( ~ ~  + A ,  + A , )  

where 

A ,  

A ,  
A ,  

results by applying 15; ’ C (d/dq,)q; to the first integral on the right-hand side 
of equation (A.4) ; 
results by applying L; ’ C k; ’ ( k X  + 4,)- ’ to that integral ; and 
results by applying L; C [(d/dq,)q; - k; ‘(k, + 4,)- ‘1 to the second integral on 
the right-hand side of equation (A.4).  
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Provided that the slab thickness allows the replacement of the summation over k,  by 
an integration, it turns out convenient to interchange the k,  and p integrations in A ,  
and A * ,  Eliminating k,  from k: + k i  < k$ by means of equation (A.3), we find the region 
of integration with respect to k ,  given by 

{ k ,  +$p[  1 T 2mo/h@’ + q:)])’ < 4:{k5/@ + 4:) -a[ 1 T 2mw/h(p2 + &I2). ( A 4  

The integrations over k,  and k,  in A ,  and A ,  are elementary. We obtain 

A , = +  c J dp@’ i 4;) - ‘ I 2  { k; - &?’ + 4;) [ 1 i 2mw/h(pZ + &)I2 >’ 
+,- 

x (d/dq,)& ‘(cot $PL, -cot $4,L,)l(P - 4,) iA.7) 

and a similar, somewhat more lengthy expression for the second contribution A , .  The 
integration over p in equation (A.7) extends over that region, where the expression in the 
brackets is positive, that is 

( A 4  [f@’ + 4:)  - (k$ +_ mw/h)]’ < k:(k: +_ 2mw/h) 
and over both signs of p .  

The third term A, can be integrated directly, yielding 

We have now reduced the phase shift according to equation (A.5) to a single inte- 
gration over p .  The integrand in equation (A.7) vanishes at both boundaries according 
to equation (A.8). The pole p = 4,  is not crossed in the course of the integration; it 
lies below the lower integration limit. Thus we may break up integral (A.7) into two 
integrals containing either cot fpL,  or cot f4,L,. The latter cotangent is not affected 
by the integration, so this integral is elementary. The factor cot ipL,  in the first integral 
oscillates rapidly. We have to take the principal value, which vanishes with increasing 
slab thickness L,. However, there are no oscillations of cot $pL, if the wavenumber 
tangential to the surface becomes large. By expanding the limits of the p 2  + q: integration 
according to equation (A.8) with respect to 2mwlhk:, we obtain 

(A.lO) 

We find that the integration over p runs partly along the imaginary axis if qY exceeds 
mwlhk,,  and runs fully along the imaginary axis if q,exceeds 2kF ;cot &pL, now approaches 
f i, so the integral over p takes on a constant value. 

(mw/hkF)’ 6 p 2  + 4: < ( 2 k ~ ) ’  & 4mW/h. 
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